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Abstract— A computationally efficient and accurate shape design sensitivity analysis (DSA) approach for
the thermal response of three-dimensional (3D) solid objects is presented which utilizes a direct, singular,
boundary element analysis (BEA) formulation. The theoretical formulations for the primary response (the
surface temperature and normal heat flux) sensitivities and the secondary response (tangential components
of the heat flux, vector, interior point temperature and heat flux vector components) sensitivities are
presented. A number of computational issues related to the overall efficiency of implementation of these
formulations are discussed. Numerical results are presented to demonstrate the accuracy and efficiency of
this approach.

INTRODUCTION

SHAPE OPTIMIZATION algorithms require knowledge
of the variation of the response of the object under
consideration when the parameters controlling its
shape (design variables) change. Design sensitivity
analysis (DSA) refers to the process of computing
rates of change of response quantities associated with
an object under a given set of boundary conditions,
with respect to changes in these parameters. These
rates of change (sensitivities) are then used in shape
optimization by the numerical optimization pro-
cedure to determine effective search steps, regarding
both direction and magnitude in the space of the
design variables. In order for three-dimensional (3D)
shape optimization for large problems to be tract-
able, it is necessary to have an accurate and com-
putationally economical DSA. Implicit differentiation
[1-9] of the discretized boundary integral equations
has been shown to be an effective strategy for the
formulation of DSA relations in 2D linear heat trans-
fer and stress analysis. The major advantage of this
approach lies in the fact that the LU factorization of
the BEA matrix, formed during the analysis, is mul-
tiply reused in this process. Kane [1, 3] and Kane and
Saigal [2,8] have demonstrated that implicit differ-
entiation of the discretized 2D boundary integral
equations provides an effective strategy for deter-
mination of surface displacement and traction com-
ponent sensitivities. In subsequent publications
involving 2D boundary element DSA, they have
treated axisymmetric solids [4], thermoelastic prob-
lems with body forces [10], coupled problems [11],
developed both a semi-analytical [5] and a simul-
taneous [6] algorithm for DSA providing significant
improvements in computational efficiency, and have
shown that sensitivity analysis can be performed in
conjunction with boundary element substructuring
[7]. Recently, for 2D thermal problems with nonlinear

boundary conditions [9] and temperature-dependent
conductivity [12], the solution of the nonlinear dis-
cretized boundary integral equations for sensitivity
analysis was accomplished by iterative procedures.
For these nonlinear problems, multi-zone analysis
and zone condensation strategies were shown to
provide substantial computational economies for
models with either localized nonlinear boundary con-
ditions or regions of geometric insensitivity to design
variables.

The 3D shape DSA formulation is identical to its
2D counterpart at the matrix level. This paper will
therefore focus mainly on the distinctive new aspecis
that are introduced due to the 3D character of the
BEA approach employed. A theoretical formulation
for the entries in the matrix sensitivities required in the
implicit differentiation approach is given that includes
sensitivities of 3D fundamental temperature and
normal heat flux solutions, unit normal vectors,
and boundary element Jacobians. This formulation
employs quadratic isoparametric boundary elements,
and is sufficient for the computation of the sensitivities
of unknown boundary temperature and normal heat
flux components on the surface of the BEA model.
These matrix sensitivities are shown to exhibit sig-
nificant sparsity for objects with partial geometric
sensitivity. The exploitation of this sensitivity is shown
to yield considerable savings in computation. A for-
mulation for the recovery of sensitivities of tangential
heat flux components on the surface of the model that
do not form a part of the primary response and that
do not require any additional numerical integration
is presented. Formulae for the recovery of tem-
perature and heat flux vector components at interior
points are also presented. A series of example prob-
lems are presented for which analytical sensitivity for-
mulae exist. Computed sensitivities are compared to
these analytic sensitivities and CPU timings are
reported.
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[4]  square left hand side coefficient matrix
present in BEA after application of
boundary conditions

a; intrinsic element coordinates

{b}  right hand side column vector present in
BEA overall system equations

b; component of unit tangent vector used in
surface tangential heat flux recovery

¢ jump term coefficient present in
temperature boundary integral
equation

D, BEA kernel function used in internal
point heat flux recovery

d, coordinate of the source point employed
in BEA fundamental solutions

€k permutation tensor

[F]  square left hand side coefficient matrix
present in BEA before application of
boundary conditions

f_ arbitrary function used in Green’s second
identity

[G]  rectangular right hand side coefficient
matrix present in BEA before
application of boundary conditions

g suface Jacobian relating actual element
and intrinsic element differential areas

g arbitrary function used in Green’s second
identity

{H} row vector of element interpolation
functions

A™  element interpolation function

associated with node n
J]  second Jacobian matrix associated with
surface tangential heat flux recovery

p—

k thermal conductivity

&; constants, used for convenience

L design variable number

L, direction cosines associated with a local

coordinate system used for surface
tangential heat flux recovery

NOMENCLATURE

", component of element surface unit
normal vector at a point

P component of the heat flux vector in the
local coordinate system

q* BEA normal heat flux fundamental
solution

4 component of the heat flux vector

{g}  column vector of node point normal heat
flux components before the
application of boundary conditions.
After application, this vector contains
specified values of node point boundary
conditions

S; BEA kernal function used in internal

point heat flux recovery

T* BEA temperature fundamental solution
T temperature
{1} column vector of node point

temperatures before the application of
boundary conditions. After application,
this vector contains unknown values
of node point boundary response
quantities

X, design variable number L

coordinate of surface sample point in
BEA formulation

¥V difference in sample point and source
point coordinates

z coordinate of sample point in local
coordinate system.

Greek symbols

r boundary

3 Dirac delta function

o distance from source point to sample
point in BEA formulation
component of unit tangent vector used in
surface tangential heat flux recovery
Q domain.

BOUNDARY FORMULATION OF THE
CONDUCTION PROBLEM

A three-dimensional isoparametric thermal BEA
formulation [14-16] is discussed to set out the nota-
tion and terminology used throughout. In thermal
BEA, the fundamental solution T* refers to the tem-
perature response of an infinite conducting medium,
with conductivity 4, to a unit point source of thermal
energy. This point source at location d is represented
by a Dirac delta function d(x~d) at sample point
x. A governing boundary integral equation can be
developed by substituting 7* for g’ in Green’s second
identity, shown below, and choosing /" to be the
temperature response of the actual problem under

consideration. Q is the domain of the actual problem,
I is the boundary of this domain and n is the unit
normal vector on the surface. ¢* denotes the normal
component of the heat flux vector corresponding to
the fundamental temperature solution. Use of the
Fourier law of heat conduction has also been made in
this derivation, along with the selection property of
the delta function:

J Vifg dej VigfdQ
(8] Q

:ngf-ndfﬂj_f'Vg'ndF hH
r i
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1
2T* = — —_
v‘r Ak o(x—d) 2

cT(d)+j ¢*Tdl = '[ T*qdr. 3)

Equation (3) can be discretized by breaking the sur-
face of the object under consideration into boundary
elements and approximating the geometry, boundary
conditions, and unknown response using simple inter-
polating functions and the values of these quantities
at a finite number of nodes :

cT(d) +A§L {f Jl_az g*{H}g da, daz}(E){T}(E)

- Nf {L' Ll_az T*{H}g da, daZFE){q}(E), @)

{H} is a row vector of element interpolation functions
associated with each node on element E, ‘g’ are
element intrinsic coordinates, and g is the Jacobian of
the transformation from the actual coordinate system
to the element’s intrinsic coordinate system. {T'}®
and {g}'® are column vectors of node point tem-
peratures and normal heat flux components respec-
tively for element E and have been taken outside the
integrals shown to produce an algebraic expression.
This boundary integral equation can be written for
any location of the source point of the fundamental
solution. A singular boundary element formulation is
obtained by locating this source point at each of the
nodes present in the boundary element model, pro-
ducing a square system of algebraic equations:

[F){t} = [G]{g}. &)

{t} is a column vector of nodal point temperatures
and {q} is a column vector of nodal point normal heat
flux components. The {z} vector has an entry for each
node in the overall problem, while the {¢q} vector
may have additional entries if jumps in the normal
component of the heat flux occur at any node. The
matrix [F] is square and [G] is either square or rec-
tangular.

In a well posed boundary value problem, half of
the temperature and normal heat flux components will
be specified (and therefore known) and the other half
will be unknown. Transferring all known values in
the vector {¢}, placing all unknown temperature and
normal heat flux components in the vector {z},
exchanging corresponding columns of the respective
rectangular matrices, and performing the indicated
matrix—vector multiplication on the right hand side,
a solvable system of equations can be produced :

[A{x} = {b}. (6)

This matrix equation is generally solved by a direct
method consisting of the triangular factorization of
the matrix [4] using a Gauss elimination procedure
with partial pivoting, followed by forward reduction
of {b} and backward substitution to determine the
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unknown response vector {x}. Note that the notation
has been generalized to mean that the vector {¢} is
the vector of unknown boundary response quantities,
while {¢} denotes the vector of specified boundary
conditions in the problem. At each node, if 4 has been
specified, then {¢} contains T for this node. If, on the

‘other hand, T had been specified for this node, then

{r} contains g for this entry.

SENSITIVITY FORMULATION FOR SURFACE
TEMPERATURE AND NORMAL HEAT FLUX
COMPONENTS

As shown in refs. [1,2], implicit differentiation of
the algebraic system equations that result when the
discretized boundary integral equations are written
for a set of load point locations corresponding to
boundary element nodes yields

o (P11} = 61a) @
or
[FI{t} . = ([G1.{q} —[F1.{s}) ®

where [F] and [G] are BEA coefficient matrices
corresponding to the column vectors of nodal point
unknown response components in {¢} and specified
boundary conditions in {g} respectively. Note that
the vector {¢} will contain temperatures of the nodes
with specified heat flux boundary condition and {g}
will contain normal heat flux components at nodes
where temperatures are specified. In the above
expression, X, represents the Lth design variable.
Equation (8) reveals a fundamental characteristic of
the implicit differentiation approach to DSA. If the
right hand side vector shown can be formed, then the
unknown nodal response sensitivity vector {¢} , can
be determined by simply solving equation (8), by for-
ward reduction and back substitution, using the fac-
torization of the left hand side matrix [F] computed
in the previous analysis step.

The entries in the matrix sensitivities shown in equa-
tion (8) are assembled from contributions associated
with pairs of elements and load points as

[FIE? =L Lr z(qi{H}g+q{H}g.L) da, da,

€)

and

[G],(E’P) =J; J;IAHZ (Ii{H}g+t{H}g‘L) da, da,.

(10)

t* and g* are the fundamental solutions for the tem-
perature and normal heat flux respectively, for the
heat transfer problem for element E due to unit source
of heat at load point P. Accordingly, % and g% are
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sensitivities of the fundamental temperature and
normal heat flux respectively. g, is the sensitivity
of the determinant of the Jacobian matrix for the
transformation from the intrinsic (isoparametric)
coordinates g, to the real element coordinates x,, for
example, as shown for the six-noded triangular
element in Fig. 1. {H} is a | x 6 row matrix of inter-
polation (shape) functions A" for the six-node iso-
parametric element. Sensitivity expressions for these
guantities arc

1% = —kpp, (n
and
ah =kolp ™ (vim +uy, )= 3vmp~p,l (12)
where
b= e 9
and
p= ()"’ (14)
ps=yip ! (13
s = Vivirp (16)
Par. = Vil = UV (n
Vi =X —dis (18)
also
P =919 ' =99 (19
where
9.=9" %G, (20)
Gis = X XX X)) (21
o Ap & Ap
Y=} (?j :;1 it Y= ) ((,2: X (22)

In these expressions, g is the distance from the load
point d to the sample point X, n is the unit outward
normal to the surface at x, and K is the thermal con-
ductivity of the material.

One might suspect that the differentiation of

the fundamental solutions present in the BEA for-

(a) Intrinsic Element
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mulation would lead to the development of infegral
equations for DSA that were more singular than the
original ones. This is not the case. Examination of
equations (9)—(18) reveals that the functions involved
in the DSA formulation have cxactly the same singu-
larity characteristics as those present in the original
analysis step. That is, % and ¢% contain functions
that behave like p~ ' and p~* respectively, as this
distance approaches zero, This fact allows numerical
integration techniques [13] (sets of sample points and
associated weighting coefficients), developed for BEA.
to be employed in this DSA step without modification.
This statement is true for both the outside integration
(p never becomes zero for a particular £, P com-
bination) and inside integration (p becomes zero for
a particular E, P combination) processes.

The numerical integration process indicated in
equations (9) and (10) deserves some further com-
ment. These two term expressions, at first, appear to
be considerably more computationally burdensome
than their counterparts in BEA. Examination of Fig.
2, however, reveals that this is not the case. This figure
presents the details of the hierarchical algorithm for
the performance of the above-mentioned integrations
in DSA. Steps preceded with the symbol x indicate the
steps that are exsra when compared with an analogous
procedure in standard BEA. Note that only the steps
associated with the computation of sensitivities of
fundamental solutions and the sensitivity of the
Jacobian and normals are extra. Also, even in these
formulae, about half of the quantities present are not
sensitivities. Note further that the arithmetic oper-
ations associated with the formation of the 1x6
matrix products remain identical to the operations util-
ized in standard BEA. For problems in which a sig-
nificant portion of the surface is geometrically insen-
sitive to the design variable, significant savingsin com-
putational effort can be accomplished in this DSA
integration step, due to the fact that the matrix sen-
sitivities will be sparse. Again, Fig. 2 can be used to
gain an appreciation of this concept. In several places
in this algorithm, tests are made to determine if certain
quantities involved in the overall computation are
known to be zero, and these operations are appro-

0.5 gdayda,

(b} Actual Element

F16. 1. Six-node isoparametric triangular boundary element.
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form k| &ky
for each E
ifboth E and all P's are geometrically insensitive to XL
then go to skipl
c compute (once) element geometric data at all integration points
form x,; g; § & n;
if E is geometrically insensitive to X1, then go to skip2

[ compute (once) element geometric sensitivity data at all integration points
x form x; g £ & oo
skip2: continue
for each P
[ compute geometric data at all integration points associated with P
form y; p Py

if both E and this P are geometrically insensitive to Xr,
then go to skipl
if P is geometrically insensitive to X,
then go to skip3
< compute geometric sensitivity data at all integration points associared with P
X form yi; P PsiL
skip3: continue
c compute fundamental solutions at all integration points
form t* &q*

£ 1 coliti

at all integration poinis

i} form t*; & q*
form augmented fundamental solution times weight at all integration points
form T <= (" *g + "* gD *w
form Q <== ("L *g + " * g *w
perform matrix product & 1 x 6 sum required for all integration points
form [F](EP) = [F ](E.P) + QH]
form [GI®P = [GI®P + TH]
next P
next E
continue

O ¥ X O MO

skipl:
return
end

FIG. 2. Numerical integration algorithm for entries in matrix
sensitivities.

priately bypassed. In subsequent sections, numerical
examples will be presented to demonstrate these
assertions regarding computational efficiency.

SENSITIVITY FORMULATION FOR SURFACE
HEAT FLUX COMPONENTS

As depicted in equations (7) and (8), the quantities
involved in this DSA formulation at the algebraic
equation solving level are sensitivities of node point
temperature and normal heat flux. In many practical
problems, in-plane heat flux components that are not
a part of the primary response are important. In this
paper, these will be referred to as tangential heat flux
components. Development of a sensitivity formula-
tion for these tangential heat flux components is thus
a requirement for any DSA capability for use in
practical shape optimization systems. The formulae
for recovery of tangential heat flux components on
the surface of a BEA model can be differentiated with
respect to X, to generate a sensitivity formulation.
Care must be taken to recognize all of the possible
geometric and thermal quantities that can be sensitive
to the design variable, and to include these derivatives
in this differentiation process.

Figure 3 can be used to visualize the coordinate
systems involved in the tangential heat flux com-
ponents recovery and subsequent sensitivity recovery
process. The global coordinate system is denoted by
x;. In the local (tangential and normal) z; coordinate
system, located at the node where tangential com-
ponents of heat flux are to be recovered, p; is used to
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Xy

FiG. 3. Coordinate systems involved in tangential heat flux
recovery.

symbolize these components (g; is used to denote the
corresponding quantities in the global directions).
This local coordinate system is configured so that the
z, direction is tangential to the boundary element and
pointing in the direction of increasing a,, z, is normal
to the element, and z, is perpendicular to z, and z;.
In this local coordinate system, the following relation-
ships exist :

oT

=Ko (23)
oT _,or
P V1 aa, (24)
4= Lup;- (29
Letting
T, T.,
{T}J = {7’:2}’ {T}.II = {Taz}
T.IL . ayl
{T}.zL = {T.ZL}’ {T},aL = {T%L},
Zl.aI ZZ,ul
then
{p}o=—K[Z{T} A+ H{T ] @D
where
Wz =V =M (28)
and
R TR TY R B Sy e
[J]_I:jZI j22:|’ [J] _|:_jl2 jll J,

(29

—jm]
jl I,

(30)

|J| =j1|j22—j12j2|

Jue Jize
[J1, =[. o ]
e Jae J2o

[J]/)“ — I: j22,L

—Ji2L
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|J‘I = ./.l LL./’ZZ +/I I.jZZ.I, - (jll.l,.jll +jllj1|,l,)

(30
) 6 &h(n) o
Jin = T = Y e (32)
n=1 Oy
o (’Q/lzlll)
Jame = (:”LIIA).I = ~ :r(r'zl.)l"
noq edy

It is important to recognize that all of the vector
components shown above are resolved in the local
coordinate system. The transformations of the com-
ponents of these physical entities from the global coor-
dinate system are

S = hiaxit Xy por = Logi g, (33)
where
ly=1: l,=5: [s=n; and (34)
b =T by =b i L, =0,
L= x0Ty = =T X, T (35)
T= (X, Hxa, Fai) (36)
T, =1 I(-\Al,uj’\ﬂl‘u;l,+'\‘1,u,".3.u,1,+~Y‘nu(\‘3.u‘l)
o oh™ o oht
Xiy, = ”ZI ("a; Xii Xean = MZ] (7111 X, (37)
by =e mrt. by =en 14nt,). (38)

Recall that »,, has been defined in equation (19). This
completes the tangential heat flux component sen-
sitivity analysis formulation in the local coordinate
system. To obtain the sensitivities of the complete heat
flux vector in the global coordinate system, one needs
to differentiate the vector component transformation
law to obtain

q[.l, = //'l'./ /7;‘}'//:[)/./'- (39)

INTERIOR POINT SENSITIVITY ANALYSIS

Integral relations are well known for the recovery
of temperature and heat flux vector components at
sample points in the domain (interior) of a BEA
model. These integral equations can be differentiated
to yield new integral equations for the recovery of the
sensitivities of temperature and heat flux components
to the design variable. The integral equations that
result involve the boundary response (nodal tem-
perature and normal heat flux) and the sensitivity
of these response quantities. Thus, the recovery of
internal point sensitivities can be accomplished via a
boundary integration process completely analogous
to that performed in the original BEA process. This
formulation is shown below. In this formulation,
indicial notation is employed instead of the matrix
notation shown, for example, in equations (9) and
(10), in order to conveniently express relations involv-
ing the vectors present in the integral equation for
internal point responsc recovery :

K. GuUrU Prasap and J. H. KaNg

Ne 06 1 ffi—a,
T, =} [Z (J f la%ih"g
=1 La=1 0 Jo
3]

+q*h"g..]da, da:)t‘"’}

o /0 (lea,
I

E=1Ln=1 o Jo

3

£
+t*h'"g ,]da, da2>q"”:|

Ne e S e A (£
+ ¥ |\ ¥ (J J g*h"g da, daz)lf;’_’}
E=1lLn=1 0 Jo
~E T e 1 ffay N ()
- Z { Z <L Jv *h"g da, da:)‘l.(;,_)" (40)
E=tboa=t 0 B
—q¢,, ~E [T 6 P,
q,’é'( =) [ <ﬁ L (D, g
R P
(1)
+D;A"g ] da, daq)r"” ’
NE 6 (S
5 ([ o
E=11_a~1 0 Jo

(70
+S54"g,1da, da1>q“":|

NE |6 11, 3]

+ Z LZ <J J D:h"g da, d“z)ﬁ,’J
F=1Ln=1 o Jo
NI 6 1M a, A (4

-2 [Z (J J Sih"g da, daz)qf}'.’] (41
E=1Ln=1 0

All of the quantities in equations (40) and (41) have
been defined, except for the vectors D, and S, and their
sensitivities. These are given as

D. = —k.p *[3(ym)p 'p.+n] (42)
S, =—k,p ‘p, (43)
Dy =kop [=3(vm)p o =3pm)p 'py
+12(ym)p ppi—ny +3p piny]l (44)
S =kip 207 'papi—paul (45)

Again, one might suspect that the differentiation of
the fundamental solutions undertaken in the interior
point sensitivity formulation would lead to the devel-
opment of integral equations that are more singular
than the corresponding original ones. As mentioned
earlier, however, this is not the case. Examination of
equations (44), (45), and (14)—(18) reveals that the
functions involved in this interior point DSA for-
mulation have exactly the same singularity charac-
teristics as those present in the original analysis step.
Thus, numerical integration techniques developed for
recovery of interior point response information in
standard BEA can be employed in this DSA step
without modification. The numerical integration pro-
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cess indicated in equations (40) and (41) appears to
be considerably more computationally burdensome
than the corresponding operation in BEA. A figure
similar to Fig. 2 could be constructed, for example, to
illustrate that this is not entirely the case. One could
argue that about twice the computational work would
be required in this process, compared to interior point
response recovery in the original BEA, due to the fact
that both the surface response and its sensitivity are
involved in the computation. Closer examination of
the last two terms in either equation (40) or (41),
however, reveals an interesting characteristic. The
integrations indicated in these terms are exactly the
same integrations that would be performed in the
original BEA internal point response recovery
process. Thus, if these coefficients are saved and
reused in the DSA step, their recomputation can be
avoided. For problems in which a significant portion
of the surface is geometrically insensitive to the design
variable, significant savings in computational effort
can again be accomplished in this DSA integration
step for interior point response, due to the fact that
many of the terms in equations (40) and (41) will be
zero for a significant number of the elements com-
prising the overall BEA model.

EXAMPLE PROBLEMS

A series of example problems is presented in order
to demonstrate the accuracy and efficiency of the for-
mulation presented above. All these problems were
run on the same dedicated computer system with a
UNIX operating system using the same Fortran 77
compiler and compiler options.

q=0
(b) Boundary Conditions
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Table 1. Surface temperature and normal heat flux sen-
sitivities for a rectangular bar

Exact Computed
Point 1y 9. i 9.
1 0.0 675.00 0.00000 675.87
3 0.0 0.00 0.01365 0.00
5 0.0 0.00 0.00067 0.00
7 0.0 0.00 ~(.02284 0.00
9 0.0 —675.00 0.00000 —667.97
12 0.0 0.00 —0.00153 0.00
14 0.0 0.00 —0.00757 0.00
16 0.0 0.00 —0.01669 0.00
i9 0.0 675.00 0.00000 672.69
30 0.0 0.00 0.00153 0.00
32 0.0 0.00 —0.00767 0.00
34 0.0 0.00 —0.01374 0.00
37 0.0 675.00 0.00000 668.63

Rectangular bar example

To start with, the problem of a rectangular bar
under pure axial heat flow was studied. Figure 4 shows
the geometry, boundary conditions and geometric
sensitivity of the nodes present in this one zone BEA
model, with 80 six-noded triangular elements and con-
taining 162 nodes. The coefficient of thermal con-
ductivity was taken as 3 units. The computer storage
required for this problem to take it through the sen-
sitivity analysis (including internal point response
recovery at six selected points) was 145605 words.
Tables 1-3 summarize the results of the runs made
with this model. In this example problem, the devel-
opment of an analytical solution for the various
response sensitivities was straightforward. The nodes

23 916 /4

LT
22 l s 12
l""l ) 234
x3

I

5 6 7 8 9
4

L=2

(a) BEA Model
FiG. 4. Rectangular bar example problem.
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Table 2. Surface tangential heat flux sensitivities for a rec-
tangular bar

Computed
Point qre 20 G 424
1 —675.00 0.0000 —-675.51 0.0000
3 —675.00 0.0000 —675.00 0.4003
5 —675.00 0.0000 —674.82 0.2161
7 —675.00 0.0000 —67431  —0.0834
9 —675.00 0.0000 —675.75 0.0000
12 —675.00 0.0000 —-674.82  —0.0358
14 —675.00 0.0000 —674.78  —0.0182
16 —675.00 0.0000 —674.29  —-0.0642
19 —67500 0.0000 —675.70 0.0000
30 67500 0.0000 —67487 —0.0388
32 —675.00 0.0000 —674.88 (.0056
34 —675.00 0.0000 —674.51 —0.0106
37 —675.00 0.0000

0.0000 —676.31

in the model have an X', geometric sensitivity to the
length design variable X, = L that varies linearly from
zero at the left end to unity at the right end. Therefore,
the node point temperature sensitivities have to be
zero. This is true because the length change causes
a temperature change, but the nodes move to new
locations that are at the same temperature as they
were in the original design. Analytical and computed
surface response sensitivities are shown in Table | for
the group of node points illustrated in Fig. 4. Note
that the computed solutions for these sensitivities are
all zero within acceptable limits of accuracy. Also, the
nonzero values of normal heat flux sensitivity show
that the computed values have a very good agreement
with analytical values with a maximum error of about
1%. Surface tangential heat flux sensitivities along the
global | direction are presented in Table 2. This table
reveals that the computed values have extremely good
accuracy, with about (.2% error in the worst case.
Table 3 shows interior sample point response sen-
sitivities for a set of six selected points for the case
where these points have linearly varying geometric

K. Guru PrasaDp and J. H. Kane

0.50
025
To.lzs
- 0.125
025
e .50

a2 K )

175

F1G. 5. Location of internal points in 4 rectangular bar.

sensitivities (just like temperature) and also where
these points have zero geometric sensitivity. This latter
case was done to demonstrate the case involving non-
zero temperature sensitivities. As shown in Fig. 5,
these sample points are chosen such that they cover
the cntire region inside the bar starting from very close
to the boundary and going up to the center of the
model. All points arc in the midplanc of the bar along
the 3 direction (i.e. z = —0.5). Note the accuracy of
these predictions at the points closest to the surface
provided by this theoretical formulation. These quan-
tities were computed using customized ‘near inte-
gration” rules that cluster integration sample points
near locations where the integrands experience rapid
variation in their values.

Hollow cylinder example

The physical problem chosen for this second
example was a thick circular hollow cylinder whosc
inner and outer radial surfaces were maintained at con-
stant temperatures of 1000 and 100 units respectively.
The other faces of the cylinder were insulated against
heat flow. The coefficient of thermal conductivity
was taken as 3 units, Figures 6(a) and (b) show the
geometry and boundary conditions imposed on all of
the quarter symmetry BEA models discussed. A scrics
of analyses and design sensitivity analyses was per-

Table 3. Internal response sensitivities for a rectangular bar

Exact Computed
Point 7 g 421 4 T, 91 g2 43

Case 1: sample points having linearly varying x, geometric sensitivily

a 0.0 -~675.00 00 0.0 0.03409 —672.80 —0.92111 —0.68729

b 0.0 —675.00 00 00 0.02584 —673.25 —0.63779 0.01813

¢ 0.0 —675.00 0.0 0.0 0.03639  —673.08 0.00673 0.00673

d 0.0 —67500 00 0.0 0.01061 —674.84 0.01016 0.01016

e 0.0 —-67500 0.0 0.0 000001 —0674.85 0.01228 0.01228

f 0.0 —675.00 0.0 0.0 ~(.02142 —674.79 0.00673 0.00673
Case 2: points having zero geometric sensitivity

a 28.125 —67500 0.0 00 28,1340  —674.25 —2.48140  —0.04935

b 56.250 —675.00 0.0 00 56,2580  --674.14 —0.53671 0.79234

c 56.250 —675.00 0.0 00 56.2630  —~674.78 0.00564 0.00564

d 112500 —67500 00 00 112.5000 —674.82 0.00927 0.00927

e 225000 —67500 0.0 00 2249700  —674.86 0.01271 0.01271

f —674.85 0.01901 0.01901

393.500 —675.00 0.0

0.0

393.6700
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50 57
(c) Radial Geometric Sensitivity

Fi1G. 6. Hollow cylinder example problem.

formed based upon this physical problem. In all of
these cases, the outer radius » was chosen as the design
variable. The analytical solution for this heat transfer
problem is well known, with the temperature a log-
arithmic function of radius and the heat flux varying
as the reciprocal of radius. These expressions for tem-
perature and normal heat flux were differentiated to
yield exact analytical expressions for these sensitivities
to changes in &. It is important to note here that the
derivatives computed in this implicit differentiation
DSA approach are true material derivatives, including
the change in the response field and the possible
change in the sample point location induced by the
change in the design variable. Thus, any differ-
entiation of an exact analytical expression must also
be a material differentiation, performed by first para-
meterizing the sample point location in the exact
expression in terms of the design variable and then
taking due regard for this derivative in the differ-
entiation process. Figure 6(c), for example, shows two
different schemes that can be employed to control sets
of sample (node) point locations, both based upon
the value of the design variable b. The full geometric
sensitivity scheme has all nodes with radial location
greater than a geometrically sensitive to b. This radial
geometric sensitivity varies in a linear fashion from
zero at R = a to unity at R = b. The second scheme,
also depicted in Fig. 6(c), has only the nodes in the
radially outward-most row of elements geometrically
sensitive to b. Note that a change in b will cause an
identical change in the actual temperature and heat
flow fields simulated by either the full or partially
sensitive BEA models. However, because the nodes
present in these two BEA models move to different
locations in this response field, the node point geo-
metric sensitivities will be different. Nodes on the inner
and outer radius of these cylinder models will have

identical response sensitivities because these nodes
have identical geometric sensitivities in both the full
and partial geometric sensitivity scheme.

Case 1: one-zone model with full geometric sensi-
tivity. Figure 6(a) shows the single zone BEA model
used in these demonstration problems. This model
contained 154 nodes and 76 six-node triangular
elements and the overall left hand side matrix associ-
ated with this model required 132209 words of com-
puter memory. Table 4 contains CPU timings for
the major computational steps involved in both the
analysis and DSA process. From this table it is seen
that the 24.7 CPU seconds spent in the analysis step
to factor the BEA overall system matrix is saved in the
DSA process. However, the numerical integrations
required in the DSA step take about twice as much
time as that required in the analysis. This is due to the
fact that the two term expression for the kernels shown
in equations (9) and (10) is about twice as complicated
as that integrated in the usual BEA process. Table 5
contains the exact and computed values of the tem-
perature and normal heat flux sensitivities for the case
of full geometric sensitivity illustrated in Fig. 6(c).
Table 6 contains the exact and computed values of
the tangential heat flux sensitivities, while Table 7
contains temperature and heat flux vector sensitivities
for the internal points shown in Fig. 7. The internal
response recovery points are all located in the
x3= —L15 plane and have radial geometric sen-
sitivities that are the same as nodes located at the same
radial locations. Note the extreme accuracy of the
predictions appearing in al// these tables, with most
predictions in error less than 1%.

Case 2: one-zone model with partial geometric
sensitivity. This BEA model is identical to the one
used in the previous example except that its nodes
were only partially sensitive to the design variable .
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Step
Analysis
Preliminarics
Numerical integration
Zone assembly
Zone condensation
Overall assembly
Matrix factorization
Forward reduction and back substitution
Surface response recovery
Interior response recovery
Design sensitivity analysis
Preliminaries
Numerical integration
Zone assembly
Overall assembly
Forward reduction and back substitution
Surface response recovery
Interior response recovery

Total

Table 4 again reveals that the 24.6 CPU seconds spent
in the analysis step to factor the BEA overall system
matrix are saved in the DSA process. In this example,
the numerical integrations required in the DSA step
take only 88% of the time required in the analysis.
Although the more complicated two term expression
for the kernels shown in equations (9) and (10) is again
being integrated, this integration is only required for
the reduced number of element and load point pairs

Table 5. Surface temperature and normal heat flux sen-
sitivities for case |

Exact Computed
Point ty q. ‘ q,
[ 0.00000 —46.6051 0.00000 —46.6520
2 0.00000 —46.6051 0.00000 —46.5890
3 0.00000 —46.6051 0.00000 —46.6180
4 0.00000 —46.6051 0.00000 —46.5850
5 0.00000 —46.6051 0.00000 —46.6240
6 0.00000 —46.6051 0.00000 —46.5960
7 0.00000 —46.6051 0.00000 —46.5640
8 —5.17260 0.0000 —5.16630 0.0000
14 —5.17260 0.0000 —5.16870 0.0000
15 —8.02380 0.0000 —8.02760 0.0000
21 —8.02380 0.0000 —8.00760 0.0000
22 —9.15290 0.0000 ~9.15910 0.0000
28 —9.15290 0.0000 —-9.12670 0.0000
29 —8.97350 0.0000 —8.98040 0.0000
36 —7.77990 0.0000 —7.78660 0.0000
42 —7.77990 0.0000 —7.75320 0.0000
43 —5.78630 0.0000 —5.78860 0.0000
49 —5.78630 0.0000 —5.75960 0.0000
50 —3.15270 0.0000 —3.13600 0.0000
56 —3.15270 0.0000 —3.13520 0.0000
57 0.00000 —32.6020 0.00000 —32.5750
59 0.00000 —32.6020 0.00000 —32.7860
60 0.00000 —32.6020 0.00000 —32.5690
61 0.00000 —32.6020 0.00000 —32.7660
62 0.00000 —32.6020 0.00000 —32.5960

63 0.00000 —32.6020

0.00000

—32.6020

K. Guru Prasap and J. H. KANE

Table 4. CPU timings for major steps in analysis and DSA for cylinder example cases

Case 2

Case | Case 3 Case 4 Case 5
1.4 [4 1.5 1.8 b7
24.7 24.6 23.5 229 22.7
3.5 3.6 4.0 2.7 6
0.0 0.0 0.0 0.0 1.9
0.1 0.1 0.1 0.1 0.1
2.2 2.2 2.2 1.7 0.2
0.3 0.3 0.3 0.4 0.2
0.4 0.4 0.3 0.5 0.0
4.8 6.2 8.2 84 0.0
0.3 0.3 0.1 0.1 0.1
48.2 21.6 42.8 10.5 10.1
4.1 4.1 4.6 1.2 0.7
0.1 0.1 0.1 0.0 0.0
0.3 0.3 0.3 0.4 2
0.3 0.3 0.3 0.3 0.0
12.0 13.0 17.0 17.9 0.0
102.7 78.5 68.9 40.3

105.3

that produce finite values of ¢, % and ¢%, in this
model with partial geometric sensitivity. Tables 8-10
contain the exact and computed values of the surface
and internal response sensitivities for this case of par-
tial geometric sensitivity illustrated in Fig. 6(c). Again,
the internal stress recovery points are all located in
the x; = — 1.5 plane but they all have radial geometric
sensitivities equal to zero. It can be seen from this

Table 6. Surface tangential heat flux sensitivities for case |

Exact Computed
Point g 42y G Yy
1 —~46.6051 0.0000 —47.8110 0.0000
2 —45.0171 —12.0624 —45.0020 —12.0580
3 ~40.3612 -23.3026 ~40.4730 —23.1340
4 329548 329548 —32.9400 —32.9400
5 -23.3026 —40.3612 —-23.4870 —40.2760
6 —12.0624 —45.0171 —12.0600 —45.0080
7 0.0000 —46.6051 0.0000 -—-47.7480
8 —49.3842 0.0000 —48.9390 0.0000
14 0.0000 —49.3842 0.0000 —48.9780
15 —49.2023 0.0000 —49.8510 0.0000
21 0.0000 —49.2023 0.0000 —49.7620
22 474179 0.0000 —47.2240 0.0000
28 0.0000 —47.4179 0.0000 —47.2110
29 —44.8021 0.0000 —45.1460 0.0000
35 0.0000 -—44.8021 0.0000 —45.1120
36 —41.8015 0.0000 —41.6890 0.0000
42 0.0000 —41.8015 0.0000 —41.6860
43 —38.6774 0.0000 —38.8020 0.0000
49 0.0000 —38.6774 0.0000 - 38.8640
50 -35.5819 0.0000 —35.4800 0.0000
56 0.0000 —35.5819 0.0000 —35.4700
57 —32.6020 0.0000 —32.5990 0.0000
58 —31.4911 —-8.4380 —~31.4650 —8.4311
59 —28.2342 —16.3010 —28.3220 ~16.5160
60  —23.0531 -—23.0531 -23.0300 —23.0300
61  ~16.3010 —28.2342 —16.2600 —28.4470
62 —8.4380 —31.4911 --8.4364 —31.4850

63 0.0000 —32.6020 0.0000 - 32.6870
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Table 7. Internal response sensitivities for case 1

Exact Computed
Point T, gL qrr /E¥ T, q.L /EX 9L
a —8.9735 —43.2755 —11.5956 0.0 —8.9752 —43.2850 —13.0410 —0.671E—5
b —5.1726 —34.9199 —34.9199 0.0 —5.1419 —35.5740 —35.5990 —0.108E—3
c —8.0238 —34.7913 —-34.7913 0.0 —8.0175 —34.7680 —34.7980 —0.267E—3
d —9.1529 —33.5295 —33.5295 0.0 --9.1465 —33.5140 —33.5540 0.542E—4
e —8.9735 —31.6798 —31.6798 0.0 —8.9656 —31.6750 —31.7050 0.717E—-4
f —3.1527 —25.1602 —25.1602 0.0 —3.1482 —25.1180 —25.1590 0.576E—4
g —8.9735 —22.4010 —38.7997 0.0 —8.9617 —22.4220 —38.8090 0.263E—3

example case that the sensitivities of the response at
the internal points can be computed regardless of
whether the overall model has full or partial geometric
sensitivity. That is, Tables 7 and 10 demonstrate that
interior response sensitivities are computable both
when the internal points chosen move or do not move
with respect to the unperturbed model. Note again

F1G. 7. Locations of internal sample points.

Table 8. Surface temperature and normal heat flux sen-
sitivities for case 2

-

Computed

Exact
Point t q. 1, q,
1 0.00000 —46.6051 0.00000 —46.6690
2 0.00000 —46.6051 0.00000 —46.6290
3 0.00000 —46.6051 0.00000 —46.6780
4 0.00000 —46.6051 0.00000 -—46.6460
5 0.00000 —46.6051 0.00000 —46.6860
6 0.00000 —46.6051 0.00000 —46.6530
7 0.00000 —46.6051 0.00000 —46.6820
8 9.87860 0.0000 9.88740 0.0000
14 9.87860 0.0000 9.88970 0.0000
1S 19.22360 0.0000 19.23700 0.0000
21 19.22360 0.0000 19.23900 0.0000
22 28.13260 0.0000 28.15000 0.0000
28 28.13260 0.0000 28.15600 0.0000
29 36.68050 0.0000 36.69900 0.0000
36 44.92570 0.0000 44.94200 0.0000
42 4492570 0.0000 44.96300 0.0000
43 5291490 0.0000 52.91600 0.0000
49 5291490 0.0000 52.95800 0.0000
50  24.02920 0.0000 24.06500 0.0000
56  24.02920 0.0000 24.06000 0.0000
57 0.00000 —32.6020 0.00000 —32.7750
58 0.00000 —32.6020 0.00000 —32.3660
59 0.00000 —32.6020 0.00000 —32.6260
60 0.00000 —32.6020 0.00000 —32.4040
61 0.00000 —32.6020 0.00000 —32.6080
62 0.00000 —32.6020 0.00000 —32.4300
63 0.00000 —32.6020 0.00000 —32.4520

the extreme accuracy of these predictions, with most
predictions in error less than 1%.

Case 3: two-zone model with full geometric sensi-
tivity. Figure 8 shows a two-zone BEA model also
used in these demonstration problems. This model
contained 159 nodes (five more than the single zone
model) and 88 six-node triangular elements (12 more
than the single zone model) and the sparse blocked
overall left hand side matrix required 133 185 words
of computer memory. From Table 4 it is seen that the
24.7 CPU seconds spent in the analysis step to factor
the BEA overall system matrix are saved in the DSA
process. However, the numerical integrations required
in the DSA step again took about twice as much time
as that required in the analysis. This is again due to
the fact that the two term expression for the kernels
shown in equations (9) and (10) is about twice as

Table 9. Surface tangential heat flux sensitivities for case 2

Exact Computed
Point 9L qar gL 9L

1 —46.6051 0.0000 —46.6340 0.0000

2 —450171 —12.0624 —45.0400 —12.0690

3 —403612 -23.3026 —40.5260 —23.1640

4 —329548 —32.9548 —32.9840 —32.9840

5  —23.3026 -—40.3612 —-23.5180 —40.3300

6 —12.0624 —45.0171 —12.0750 —45.0640

7 0.0000 —46.6051 0.0000 —47.7480

8 —39.7550 0.0000 —39.7950 0.0000
14 0.0000 —39.7550 0.0000 —39.7990
15 —34.2043 0.0000 —34.2040 0.0000
21 0.0000 —34.2043 0.0000 —34.2700
22 —29.6358 0.0000 —29.6340 0.0000
28 0.0000 —29.6358 0.0000 —29.6500
29 —25.8271 0.0000 —25.8370 0.0000
35 0.0000 —25.8271 0.0000 —25.8760
36 —226178 0.0000 —22.5750 0.0000
42 0.0000 -—22.6178 0.0000 —22.6180
43 —19.8890 0.0000 —19.7900 0.0000
49 0.0000 —19.8890 0.0000 —20.6850
50  —27.9045 0.0000 —27.4890 0.0000
56 0.0000 —27.9045 0.0000 --27.5090
57  —32.6020 0.0000 —32.8540 0.0000
58  —31.4911 —8.4380 —31.2630 —8.3768
59 —282342 —16.3010 —28.1840 —16.4350
60 —23.0531 —23.0531 —229130 —-229130
61 —16.3010 —28.2342 —16.1810 —28.3100
62 —8.4380 —31.4911 —8.3936 —31.3250
63 0.0000 —32.6020 0.0000 —32.6870




1438
Exact
Point T, 41 421 3.
a 36.6805 - 24.9470 —6.6845 0.0
b 9.8787 —28. 1110 ~28.1110 0.0
c 19.2236 —24.1861 —24.1861 0.0
d 28.1326 —20.9556 —20.9556 0.0
e 36.6805 —18.2625 —18.2625 0.0
f 60.5853 —12.4106 —12.4106 0.0
g —22.3669 0.0

36.6805

—12.9135

Fic. 8. Hollow cylinder two-zone BEA model.

complicated as that integrated in the usual BEA pro-
cess. The accuracy of the temperature, surface heat
flux components, and internal response sensitivities
for this case were similar to those obtained in the
single zone problem.

Case 4: two-zone model with partial geometric
sensitivity. In this two-zone model, only zone 2 is
geometrically sensitive to b, and thus only this zone
contributes finite values of [F], and [G},. This
numerical integration in the DSA step takes only 46%
of the time required to perform the numerical inte-
gration in the analysis. The accuracy of the tempera-
ture, surface heat flux components, and internal
response sensitivities for this case were again similar
to those obtained in the single zone, partially sensitive
problem. This example quantifies the computer time
savings that can be achieved via the implicit differ-
entiation approach for models with partial geometric
sensitivity.

Case 5: two-zone model with partial geometric
sensitivity and with zone 1 condensed. This case 18
identical to the previous one except that zone 1 is
condensed in the analysis process as described in ref.
[7]. All matrices present in the DSA process for this
case are of reduced size as described in this reference.
The accuracies in this case are identical to those occur-
ring in case 4.

SUMMARY

A three-dimensional design sensitivity analysis
formulation has been presented based upon the
boundary element analysis method and implicit differ-

K. Gury Prasap and J. H. Kaxng

Table 10. Internal response sensitivities for case 2

Computed
T, FRW3 o daa
36.6790 -~ 249290 —6.6867 —{.882E -3
9.8853 - 28.1060 —28.1180 ~0.327E~3
19.2310 —24.1890 —24.1980 —0171E~3
28.1420 --20.9390 —20.9640 —0.863E—~4
36.6890 - 18.2540 —18.2620 —(0.532E ~4
60.6860 ~12.3470 —12.3400 0.112E--3

36.6940 - 12.9030 —22.3810

0.235E -3

entiation. The effectiveness of this theoretical formula-
tion and its implementation has been demonstrated
for the accurate and efficient computation of the
sensitivities of temperature, surface heat flux compon-
ents, and internal response quantities by means of a
series of three-dimensional example problems.
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ANALYSE THERMIQUE DE SENSIBILITE A LA FORME PAR UNE METHODE
TRIDIMENSIONNELLE D’ELEMENT DE FRONTIERE

Résumé—On présente une analyse de sensibilité a la forme (DSA) trés efficace et précise numériquement
pour la réponse thermique d’un solide tridimensionnel (3D); elle utilise une formulation d’analyse directe
d’élément de frontiére (BEA). On présente les formulations théoriques des sensibilités pour la réponse
primaire (température et flux normal thermique pariétaux) et des sensibilités a la réponse secondaire
(composantes tangentielles du flux thermique, température et composantes du flux thermique en un point
intérieur). On discute les données du calcul pour lefficacité globale d’implémentation de ces formulations.
Des résultats numériques sont présentés pour démontrer la précision et efficacité de cette approche.

UNTERSUCHUNG DER SENSITIVITAT DER THERMISCHEN DARSTELLUNG EINES
DREIDIMENSIONALEN RANDELEMENTS

Zusammenfassung—Fir die Darstellung des thermischen Ubergangsverhaltens eines dreidimensionalen
Festkorpers wird eine recheneffiziente und genaue Sensitivitdtsanalyse vorgestellt, die eine direkte und
singuldre Formulierung der Randelementanalyse benutzt. Die theoretische Formulierung fiir die Sensitivitit
der primiren Systemantwort (Oberflichentemperatur und Wirmestromdichte in normaler Richtung) und
der sekunddren Systemantwort (Tangentialkomponenten des Wirmestromdichten-Vektors, Temperatur
und Komponenten des Wirmestromdichten-Vektors im Inneren) wird vorgestellt. Hierzu wird eine Anzahl
von Rechenergebnissen beziiglich der Gesamteffizienz der Implementierung dieser Formulierungen disku-
tiert. Zur Darstellung der Genauigkeit und Effizienz dieses Néherungsverfahrens werden numerische
Ergebnisse prasentiert.

AHAJIN3 YITPABJIAEMOCTH TEIIJIOBBIM TTPO®UIIEM TPEXMEPHOI'O T'PAHUYHOI'O
DJIEMEHTA

Annoranas—Ha 0CHOBe NPAMOro CHHTYIAPHOTO aHAM33 IPAHAYHOTO JIEMENTA MpeioxkeH ek THB-
HBIA B TOYHBIA METOM AaHAJN3A YNPABNAEMOCTH GOPMOI LIS ONpeaesEHNN TUHAMHYUCCKHX XapaKTEPHC-
THK TPEXMEPHBIX TBepabIx Ten. JlaHn TeopeTHyeck#e (OPMYIMPOBKHM NEPBHYHON YIPaBJIAEMOCTH
XapaKTepHCTHKaMM (TEMIEPATYPOH MOBEPXHOCTH M MOPMAJBHBIM TEILIOBLIM MOTOKOM) H BTOPHYHOM
YNpapiseMOCTH XapakTEPUCTHKAMH (TaHT€HUMAIPHBIMH KOMIIOHCHTAMM BEKTOpPA TEILIOBOTO IOTOKA,
TEMIIEPATYPOH BHYTPEHHEH TOYKHM M KOMIOHEHTAMH BEKTOpa TEILIOBOTO moToka). O6CyxknaeTcs psn
pacxoxeHuil B 3pPeKTHBHOCTH HCNIONBLIOBAHMSA HTHX (OPMYITHPOBOK. [IpecTaBCHbI YHCTIEHHEIE Pely-
JIbTaThl, NOATBEPXAAIOMINE TOYHOCTD U HPHEXTUBHOCTD MeTOAa.



