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Abstract-A computa~onally efficient and accurate shape design sensitivity analysis (DSA) approach for 
the thermal response of three-dimensional (3D) solid objects is presented which utilizes a direct, singular, 
boundary element analysis (BEA) formulation. The theoretical formulations for the primary response (the 
surface temperature and normal heat flux) sensitivities and the secondary response (tangential components 
of the heat flux, vector, interior point temperature and heat flux vector components) sensitivities are 
presented. A number of computational issues related to the overall efficiency of implementation of these 
formulations are discussed. Numerical results are presented to demonstrate the accuracy and efficiency of 

this approach. 

INTRODUCTION 

SHAPE OPTIMIZATION algorithms require knowledge 
of the variation of the response of the object under 
consideration when the parameters controlling its 
shape (design variables) change. Design sensitivity 
analysis (DSA) refers to the process of computing 
rates of change of response quantities associated with 
an object under a given set of boundary conditions, 
with respect to changes in these parameters. These 
rates of change (sensitivities) are then used in shape 
optimization by the numerical optimization pro- 
cedure to determine effective search steps, regarding 
both direction and magnitude in the space of the 
design variables. In order for three-dimensional (3D) 
shape optimization for large problems to be tract- 
able, it is necessary to have an accurate and com- 
putationally economical DSA. Implicit differentiation 
[l-9] of the discretized boundary integral equations 
has been shown to be an effective strategy for the 
formulation of DSA relations in 2D linear heat trans- 
fer and stress analysis. The major advantage of this 
approach lies in the fact that the LU facto~zation of 
the BEA matrix, formed during the analysis, is mul- 
tiply reused in this process. Kane [ 1,3] and Kane and 
Saigal [2,8] have demonstrated that implicit differ- 
entiation of the discretized 2D boundary integral 
equations provides an effective strategy for deter- 
mination of surface displacement and traction com- 
ponent sensitivities. In subsequent publications 
involving 2D boundary element DSA, they have 
treated axisymmetric solids [4], thermoelastic prob- 
lems with body forces [lo], coupled problems [l I], 
developed both a semi-analytical [S] and a simul- 
taneous [4] algo~thm for DSA providing signifi~nt 
improvements in computational efficiency, and have 
shown that sensitivity analysis can be performed in 
conjunction with boundary element substructuring 
[7]. Recently, for 2D thermal problems with nonlinear 

boundary conditions [9] and temperature-dependent 
conductivity [12], the solution of the nonlinear dis- 
cretized boundary integral equations for sensitivity 
analysis was accomplished by iterative procedures. 
For these nonlinear problems, multi-zone analysis 
and zone condensation strategies were shown to 
provide substantial computational economies for 
models with either localized nonlinear boundary con- 
ditions or regions of geometric insensitivity to design 
variables. 

The 3D shape DSA formulation is identical to its 
2D counterpart at the matrix level. This paper will 
therefore focus mainly on the distinctive new aspects 
that are introduced due to the 3D character of the 
BEA approach employed. A theoretical formulation 
for the entries in the matrix sensitivities required in the 
implicit differentiation approach is given that includes 
sensitivities of 3D fundamental temperature and 
normal heat flux solutions, unit normal vectors, 
and boundary element Jacobians. This formulation 
employs quadratic isoparametric boundary elements, 
and is sufficient for the computation of the sensitivities 
of unknot boundary temperature and normal heat 
flux components on the surface of the BEA model. 
These matrix sensitivities are shown to exhibit sig- 
nificant sparsity for objects with partial geometric 
sensitivity. The exploitation of this sensitivity is shown 
to yield considerable savings in computation. A for- 
mulation for the recovery of sensitivities of tangential 
heat flux components on the surface of the model that 
do not form a part of the primary response and that 
do not require any additional numerical integration 
is presented. Formulae for the recovery of tem- 
perature and heat flux vector components at interior 
points are also presented. A series of example prob- 
lems are presented for which analytical sensitivity for- 
mulae exist. Computed sensitivities are compared to 
these analytic sensitivities and CPU timings are 
reported. 
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NOMENCLATURE 

I4 square left hand side coefficient matrix ‘2, component of element surface unit 
present in BEA after application of normal vector at a point 
boundary conditions P, component of the heat flux vector in the 

a, intrinsic element coordinates ]Ocdl coordinate system 
if.73 right hand side column vector present in Y* BEA normal heat flux fundamental 

BEA overall system equations solution 

h, component of unit tangent vector used in Y< component of the heat Rux vector 
surface tangential heat flux recovery [cl: column vector of node point normal heat 

L jump term coefficient present in flux components before t hc 
temperature boundary integral application of boundary conditions. 
equation After application, this vector contains 

Q BEA kernel function used in internal 
point heat flux recovery 

specified values of node point boundary 
conditions 

4 coordinate of the source point employed & BEA kernal function used in internal 
in BEA fundamental solutions point heat flux recovery 

e,il< permutation tensor T* BEA temperature fundamental solution 

[Fl square left hand side coefficient matrix T temperature 
present in BEA before application of :f) column vector of node point 
boundary conditions telnperatures before the application of 

f arbitrary function used in Green’s second boundary conditions. After application, 
identity this vector contains unknown values 

PI rectangular right hand side coefficient of node point boundary response 
matrix present in BEA before quantities 
application of boundary conditions x,. design variable number L 

g sufacc Jacobian relating actual element .Y, coordinate of surface sample point in 
and intrinsic element differential areas BEA formulation 

.4 arbitrary function used in Green’s second .r, difference in sample point and source 
identity point coordinates 

(HI row vector of element interpolation =, coordinate of sample point in local 
funclions coordinate system. 

{r(a) element interpolation function 
associated with node n 

[Jl second Jacobian matrix associated with Greek symbols 
surface tangential heat flux recovery r boundary 

k thermal conductivity 6 Dirac delta function 

A-, constants, used for convenience P distance from source point to sample 

L design variable number point in BEA formulation 

1 0 direction cosines associated with a local 7, component of unit tangent vector used in 

coordinate system used for surface surface tangential heat flux recovery 

tangential heat flux recovery n domain. 

BDUNDARY FORMULATION OF THE 
CONDUCTION PROBLEM 

consideration. Q is the domain of the actual problem, 
I- is the boundary of this domain and n is the unit 

A three-dimensional isoparametric thermal BEA 
normal vector on the surface. q* denotes the normal 

formulation 114161 is discussed to set out the nota- 
component of the heat flux vector corresponding to 

tion and terminology used throughout. In thermal 
the fundal~l~ntal temperature solution. Use of the 

BEA, the fundamental solution T* refers to the tem- 
Fourier law of heat conduction has also been made in 

perature response of an infinite conducting medium, 
this derivation, along with the selection property of 

with conductivity k, to a unit point source of thermal 
the delta function : 

energy. This point source at location d is represented 
by a Dirac delta function &x-d) at sample point 
x. A governing boundary integral equation can be 

LV’ivdfi-LV’B.fdQ 

developed by substituting T* for ‘y’ in Green’s second 
identity, shown below, and choosing tf“ to be the = 
temperature response of the actual problem under 

gVJ’*ndT- .f‘Vg*ndJ- (I) 
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V2T* = -&&x-d) 

cT(d)+lq*TdT = L T*qdT. (3) 

Equation (3) can be discretized by breaking the sur- 
face of the object under consideration into boundary 
elements and approximating the geometry, boundary 
conditions, and unknown response using simple inter- 
polating functions and the values of these quantities 
at a finite number of nodes : 

NEL I 
CT(d)+ 1 

iSi 

1 -a* W 
q*{H}gda, da, {T}‘“’ 

EC, 00 1 

NIX I I-o, (El 
= 

W 
T*{H}g da, da2 {q}‘E’. (4) 

E=, 0 0 1 

{H} is a row vector of element interpolation functions 
associated with each node on element E, ‘ai are 
element intrinsic coordinates, and g is the Jacobian of 
the transformation from the actual coordinate system 
to the element’s intrinsic coordinate system. {T}(E) 

and (q}‘E) are column vectors of node point tem- 
peratures and normal heat flux components respec- 
tively for element E and have been taken outside the 
integrals shown to produce an algebraic expression. 
This boundary integral equation can be written for 
any location of the source point of the fundamental 
solution. A singular boundary element formulation is 
obtained by locating this source point at each of the 
nodes present in the boundary element model, pro- 
ducing a square system of algebraic equations : 

F’l{tl = PIis). (5) 
{t> is a column vector of nodal point temperatures 
and {q} is a column vector of nodal point normal heat 
flux components. The {t ) vector has an entry for each 
node in the overall problem, while the {q} vector 
may have additional entries if jumps in the normal 
component of the heat flux occur at any node. The 
matrix [F] is square and [G] is either square or rec- 
tangular. 

In a well posed boundary value problem, half of 
the temperature and normal heat flux components will 
be specified (and therefore known) and the other half 
will be unknown. Transferring all known values in 
the vector {q}, placing all unknown temperature and 
normal heat flux components in the vector {t}, 
exchanging corresponding columns of the respective 
rectangular matrices, and performing the indicated 
matrix-vector multiplication on the right hand side, 
a solvable system of equations can be produced : 

L4c4 = iv. (6) 

This matrix equation is generally solved by a direct 
method consisting of the triangular factorization of 
the matrix [A] using a Gauss elimination procedure 
with partial pivoting, followed by forward reduction 
of {b} and backward substitution to determine the 

unknown response vector (x}. Note that the notation 
has been generalized to mean that the vector {t} is 
the vector of unknown boundary response quantities, 
while {q} denotes the vector of specified boundary 
conditions in the problem. At each node, if q has been 
specified, then {t} contains T for this node. If, on the 
‘other hand, T had been specified for this node, then 
{t ) contains q for this entry. 

SENSITIVITY FORMULATION FOR SURFACE 

TEMPERATURE AND NORMAL HEAT FLUX 

COMPONENTS 

As shown in refs. [l, 21, implicit differentiation of 
the algebraic system equations that result when the 
discretized boundary integral equations are written 
for a set of load point locations corresponding to 
boundary element nodes yields 

&([Wi = [Glbd) 

or 

F’l{t>,~ = (K%{q) -F’I.L{~I) (8) 

where [F] and [G] are BEA coefficient matrices 
corresponding to the column vectors of nodal point 
unknown response components in {t} and specified 
boundary conditions in {q} respectively. Note that 
the vector {t} will contain temperatures of the nodes 
with specified heat flux boundary condition and {q) 

will contain normal heat flux components at nodes 
where temperatures are specified. In the above 
expression, XL represents the Lth design variable. 
Equation (8) reveals a fundamental characteristic of 
the implicit differentiation approach to DSA. If the 
right hand side vector shown can be formed, then the 
unknown nodal response sensitivity vector { t},L can 
be determined by simply solving equation (8), by for- 
ward reduction and back substitution, using the fac- 
torization of the left hand side matrix [F] computed 
in the previous analysis step. 

The entries in the matrix sensitivities shown in equa- 
tion (8) are assembled from contributions associated 
with pairs of elements and load points as 

[FL (&P) = 
i i’-” 

(qlCL{fQg+q{Wg.~) da, da2 0 0 

and 

(9) 

[Gl,, (a? = s’s’- (t%{ff}g+ttH)g,~) da, da,. 0 0 

(10) 

t* and q* are the fundamental solutions for the tem- 
perature and normal heat flux respectively, for the 
heat transfer problem for element E due to unit source 
of heat at load point P. Accordingly, t% and q: are 
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sensitivities of the fundamental temperature and 
normal heat flux respectively. g,,, is the sensitivity 
of the determinant of the Jacobian matrix for the 
transformation from the intrinsic (isoparametric) 
coordinates II, to the real element coordinates x,, for 
example, as show-n for the six-nodcd triangu~r 
element in Fig. 1. {H) is a 1 x 6 row matrix of inter- 
polalion (shape) functions iz’“’ for the six-node iso- 

parametric element. Sensitivity expressions for thcsc 
quantities arc 

mulation would lead to the development of integral 
equations for DSA that were more singular than the 
original ones. This is not the cast. Examination of‘ 
equations (U)-( 18) reveals that the functions involved 
in the DSA formulation have exactly the same singu- 
larity cllar~~cteristics as those present in the original 
analysis step. That is, ts, and q;, contain functions 
that behave like p ’ and p .’ respectively, as this 
distance approaches zero. This fact allows numerical 
integration techniques [ 131 (sets of sample points and 
associated weighting coefficients), developed for BEA. 
to be empfoycd in this DSA step witbout n~odificatiorl. 
This statement is true for both the outside integration 
(p ncvcr becomes zero for a particuiar EE, P com- 
bination) and inside integration (p becomes Acre for 
a particular E. P combination) processes. where 

and 

also 

where 

ii, = 4;K: k, = -j 
4X 

(14) 

( 15) 

(lb) 

(17) 

(1% 

(1% 

In these expressions, 0 is the distance from the load 
point d to the sample point x, II is the unit outward 
normal to the surface at x, and K is the thermal con- 
ductivity of &he material. 

One might suspect that the differentiation ol 

the fundamental solutions present in the BEA for- 

The numerical integration process indicated in 

equations (9) and (10) deserves some further com- 
ment. These two term expressions, at first. appear to 

be considerably more computationally burdensome 
than their counterparts in BEA. Examination of Fig. 

2, howcvcr. reveals that this is not the cast. This figure 
presents the details of the hierarchical algorithm for 
the performance of the above-mentioned integrations 

in DSA. Steps preceded with the symboi x indicate the 
steps that arc ~~.~tru when compared with an analogous 

procedure in standard BEA. Note that only the steps 
associated with the computation of sensitivities of 

fundamental solutions and the sensitivity of the 
Jacobian and normals arc extra. Also. even in thcsc 
I’ormulac, about half of the quantities present are not 

sensitivities. Note further that the arithmetic oper- 
ations associated with the formation of the 1 K h 
matrix products remain identical to tht operations util- 
ized in standard BEA. For problems in v,hich 21 sig- 

nificant portion of the surface is geometrically inscn- 
sitivc to the design variable, signi~cant savings incom- 

pulational efrort can be accomplished in this DSA 
integration step, due to the fact that the matrix sen- 
sitivities will be sparse. Again, Fig. 2 can be used to 
gain an apprcclation of this concept. In several phces 

in this algorithm, tests are made to determine ilcertain 
quantities invoked in the overall c(~l~lpLl&~~~ion arc 
known to bc Tero, and these opwatinm arc appro- 

” 

(a) Inainsic Element J (b) Actual Element 

FIG I. Six-node isoparametric triangular boundary element 
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if E is gmm%ricaUy inmsitive to XL then go to skip2 

c contpure (once, element ge4xneWic sensitivity data *I all integration points 
I form X.L g.& gL & II& 
skip2: continue 

for each P 

c cornpure geMlenic data at all integration points awsiated with P 

form Yi p P.j 

ifboth E andthis P angeomehicaUyinsensi!ive.~, XL 
then go to skip1 
if P is eeona+xll~ inwsitive to Xl 
then go to skip3 . 

c compute geomtic semitivify data or all inte~radon points associated with P 

x form YisL P,L Pa 
skipf: continue 

c compwe&damenfal solurion a all inregradon points 
form t* &q* 

c cmnpufe sensirivides offwtdamental solutions a* all integration points 
I form t*.L & q’,L 

c fomt augmnredfwdomental sohuion rimes weight aI alI inregradon p0inf.S 

II form T <= (t*,L * g + f* * g.L) * w 

x form Q <= (q*.L * g + q’ * g.3 * w 

c pafoform matrix product & 1 x 6 swn requiredfor all integration points 

form m@” = [F I@‘) + Q [HI 

form [Gl”P)= [GI”)+ TIHI 
next P 

next E 
skipl: continue 

return 
end 

FIG. 2. Numerical integration algorithm for entries in matrix 
sensitivities. 

priately bypassed. In subsequent sections, numerical 
examples will be presented to demonstrate these 

assertions regarding computational efficiency. 

SENSITIVITY FORMULATION FOR SURFACE 

HEAT FLUX COMPONENTS 

As depicted in equations (7) and (8), the quantities 
involved in this DSA formulation at the algebraic 
equation solving level are sensitivities of node point 
temperature and normal heat flux. In many practical 
problems, in-plane heat flux components that are not 
a part of the primary response are important. In this 
paper, these will be referred to as tangential heat flux 
components. Development of a sensitivity formula- 
tion for these tangential heat flux components is thus 
a requirement for any DSA capability for use in 
practical shape optimization systems. The formulae 
for recovery of tangential heat flux components on 
the surface of a BEA model can be differentiated with 
respect to X, to generate a sensitivity formulation. 
Care must be taken to recognize all of the possible 
geometric and thermal quantities that can be sensitive 
to the design variable, and to include these derivatives 
in this differentiation process. 

Figure 3 can be used to visualize the coordinate 
systems involved in the tangential heat flux com- 
ponents recovery and subsequent sensitivity recovery 
process. The global coordinate system is denoted by 
x,. In the local (tangential and normal) zi coordinate 
system, located at the node where tangential com- 
ponents of heat flux are to be recovered, pi is used to 

FIG. 3. Coordinate systems involved in tangential heat flux 
recovery. 

symbolize these components (qi is used to denote the 
corresponding quantities in the global directions). 

This local coordinate system is configured so that the 
z, direction is tangential to the boundary element and 
pointing in the direction of increasing a,, z3 is normal 
to the element, and z2 is perpendicular to z, and zj. 

In this local coordinate system, the following relation- 
ships exist : 

Letting 

pt = -iYE 

41 = l,,P,. 

then 

{PJ,L = -~[[Jl,~‘ITJ,+[Jl-‘~T~,~,1 

where 

[Jli = ~JlrZIJI~‘-~JIAIJI~Z~J1,L 

and 

(23) 

(24) 

(25) 

(27) 

(28) 

[Jl.L = 
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It is important to recognize that all of the vector 
components shown above are resolved in the local 
coordinate system. The transformations of the com- 
ponents of these physical entities from the global coor- 
dinate system are 

--i./ = L.,..? + Lu,., ; Pt./ = L,4,+Ly,,, (33) 

where 

I,, = z, : lrZ = h, : l,, = II, ; and (34) 

1 ii., = *,/.: I 12.1 = IT,, : I,,., = n,,. 

t, = T ‘.Ytc,,: T,, = -T 2 
51 -y,.<,, + 5 ’ .%,I (3.5) 

T = (xf.,,, +.d,,, ;_Y;.,,;) ’ 2 ; C.36) 

t , =5 ‘(.L,-\. i.<ilI +.~1,,,.~-2,,,, +.~3.,,,.‘-, .,,,I) 

h, = e,,in,r, : h,, = rJ,l(” ,_I, T,\ +n,T,., 1. (38) 

Recall that n,,,_ has been defined in equation (I 9). This 
completes the tangential heat flux component sen- 
sitivity analysis formulation in the local coordinate 
system. To obtain the sensitivities of the complete heat 
thtx vector in the global coordinate system, one needs 
to differentiate the vector component transformation 
law to obtain 

4t.l = l,,., P,t-l,,P,., (39) 

INTERIOR POINT SENSITIVITY ANALYSIS 

Integral relations are well known for the recovery 
of temperature and heat flux vector components at 
sample points in the domain (interior) of a BEA 
model. These integral equations can be differentiated 
to yield new integral equations for the recovery of the 
sensitivities of temperature and heat flux components 
to the design variable. The integral equations that 

result involve the boundary response (nodal tem- 
perature and normal heat flux) and the sensitivity 
of these response quantities. Thus, the recovery of 
internal point sensitivities can be accomplished via a 
boundary integration process completely analogous 
to that performed in the original BEA process. This 
formulation is shown below. In this formulation. 
indicial notation is employed instead of the matrix 
notation shown. for example, in equations (9) and 
(lo), in order to conveniently express relations involv- 
ing the vectors present in the integral equation for 
internal point response recovery : 

II 
(1.1 

+ q*h’“‘g,, ] da, da2 6”’ 

,z, [,+, i 1,’ .i’ (I’ ]tf l?‘“‘.Y 

1 1 
t.5) + t * h'"'g,,,] dn, da, q’“’ 

,gi j,:, (1,’ 1,’ “’ t*h’“‘g da, dil+;: jr”’ (40) 

-q,.,,(d) 
K 

+ D,l+“‘,c/,, ] da , da, 

1 I 
II b 

+ S,h’“‘</,, ] du , da, q”” 

All of the quantities in equations (40) and (41) have 

been defined, except for the vectors D, and S, and their 
sensitivities. These are given as 

n, = -k,p j[3(L’,rz,)l, ‘[‘!f?r,] (42) 
? 

s, = -k,p -p, (43 1 

D,., = k,P ‘[-~(Y,4~.,P ‘P., -3(,r>n,)l’ ‘P.r, 

+ l2(YF<)P 2P.,./‘., -n,., + 3P ‘I’., 11611 (44) 

X., =k,F 2PP ‘I’,I’.,~~/‘Ll. (45) 

Again, one might suspect that the differentiation 01 

the fundamental solutions undertaken in the interior 
point sensitivity formulation would lead to the devel- 
opment of integral equations that are more singular 
than the corresponding original ones. As mentioned 
earlier, however. this is not the case. Examination 01 
equations (44), (45), and (14)-(18) reveals that the 
functions involved in this interior point DSA for- 
mulation have exactly the same singularity chardc- 
teristics as those present in the original analysis step. 
Thus, numerical integration techniques developed for 
recovery of interior point response information in 
standard BEA can be employed in this DSA step 
without modification. The numerical integration pro- 
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cess indicated in equations (40) and (41) appears to 
be considerably more computationally burdensome 
than the corresponding operation in BEA. A figure 
similar to Fig. 2 could be constructed, for example, to 
illustrate that this is not ent&eIy the case. One could 
argue that about twice the computational work would 
be required in this process, compared to interior point 
response recovery in the original BEA, due to the fact 
that both the surface response and its sensitivity are 
involved in the computation. Closer examination of 
the last two terms in either equation (40) or (41), 
however, reveals an interesting characteristic. The 
integrations indicated in these terms are exactly the 
same integrations that would be performed in the 
original BEA internal point response recovery 
process. Thus, if these coefficients are saved and 
reused in the DSA step, their recomputation can be 
avoided. For problems in which a signi~cant portion 
of the surface is geometrically insensitive to the design 
variable, significant savings in computational effort 
can again be accomplished in this DSA integration 
step for interior point response, due to the fact that 
many of the terms in equations (40) and (41) will be 
zero for a significant number of the elements com- 
prising the overall BEA model. 

EXAMPLE PROBLEMS 

A series of example problems is presented in order 
to demonstrate the accuracy and efficiency of the for- 
mulation presented above. All these problems were 
run on the same dedicated computer system with a 
UNIX operating system using the same Fortran 77 
compiler and compiler options. 

Table I. Surface temperature and normal heat flux sen- 
sitivities for a rectangular bar 

Exact Computed 

Point fC 4.1. f.L B.L 

1 0.0 675.00 o.OOuOo 675.87 
3 0.0 0.00 0.01365 0.00 
5 0.0 0.00 0.00067 0.00 
7 0.0 0.00 -0.02284 0.00 
9 0.0 -675.00 0.00000 -667.97 
12 0.0 0.00 -0.00153 0.00 
14 0.0 0.00 -0.00757 0.00 
I6 0.0 0.00 -0.01669 0.00 
19 0.0 675.00 0.00000 672.69 
30 0.0 0.00 0.00153 0.00 
32 0.0 0.00 -0.00767 0.00 
34 0.0 0.00 -0.01374 0.00 
37 0.0 675.00 0.00000 668.63 

-- -. 

Rectanguhr bar example 
To start with, the problem of a rectangular bar 

under pure axial heat flow was studied. Figure 4 shows 
the geometry, boundary conditions and geometric 
sensitivity of the nodes present in this one zone BEA 
model, with 80 six-noded triangular elements and con- 
taining 162 nodes. The coefficient of thermal con- 
ductivity was taken as 3 units. The computer storage 
required for this problem to take it through the sen- 
sitivity analysis (including internal point response 
recovery at six selected points) was 145605 words. 
Tables l-3 summarize the results of the runs made 
with this model. In this example problem, the devel- 
opment of an analytical solution for the various 
response sensitivities was straightforward. The nodes 

q=o 

@) Boundary Conditions (c) Nodal Geometric Sensitivity 

a2 

i- 
X1 

X3 

(a) BEA Model 

FIG. 4. Rectangular bar example problem. 
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Table 2. Surface tangential heat flux sensitivities for a rec- 
tangular bar 

Exact Computed 

Point q1.1 42 ‘II i 

I -675.00 0.0000 -675.51 
3 - 675.00 0.0000 - 675.00 
5 -675.00 0.~0~ ~ 674.82 
7 - 675.00 ~.OO~ -674.31 
9 -675.00 0.0000 -675.15 

12 -675.00 0.0000 - 674.82 
14 - 675.00 0.0000 -- 674.78 
16 -675.00 0.0000 -674.29 
19 - 675.00 0.0000 -675.70 
30 -675.00 O.0000 - 674.87 
32 -675.00 0.0000 - 674.88 
34 -675.00 0.0000 -674.51 
37 - 675.00 0.0000 -676.31 

0.0000 
0.4003 
0.2161 

-0.0834 
O.0000 

-0.0358 
-0.018:! 
-- 0.0642 

0.0000 
-0.0388 

0.0056 
-0.0106 

0.0000 

in the model have an S, geometric sensitivity to the 
length design variable X,, = L that varies linearly from 

zero at the left end to unity at the right end. Therefore, 
the node point temperature sensitivities have to be 
zero. This is true because the length change causes 
a temperature change. but the nodes move to new 
locations that are at the same temperature as they 

were in the original design. AnaIytical and computed 
surface response sensitivities are shown in Table I for 
the group of node points illustrated in Fig. 4. Note 
that the computed solutions for these sensitivities are 

all zero within acceptable limits of accuracy. Also. the 
nonzero values of normal heat flux sensitivity show 

that the computed values have a very good agreement 
with analytical values with a maxjmum error of about 
1 o/n. Surface tangential heat fiux sensitivities along the 
global 1 direction are presented in Table 2. This table 

reveals that the computed values have extremely good 
accuracy, with about 0.2% error in the worst case 
Table 3 shows interior sample point response sen- 
sitivities for a set of six selected points for the case 
where these points have linearly varying geometric 

I 

.@ .,.,, 

-+0X25 
- 0.25 

-0.50 
-1.0 

----------w 1.75 

Flc;. 5. Location of internal points in a rectangular bar. 

sensitivities {just like tempe~ture) and also where 
these points have zero geometric sensitivity. This latter 
case was done to demonstrate the case involving non- 
zero temperature sensitivities. As shown in Fig. 5, 
these sample points are chosen such that they COVCI 
the entire region inside the bar starting from very close 
to the boundary and going up to the center of the 

model. All points are in the midplanc of the bar along 
the 3 direction (i.e. z = -0.5). Note the accuracy of 

these predictions at the points closest to the surface 
provided by this theoretical formulation. These quan- 
tities were computed using customized ‘near intc- 
gration’ rules that cluster integration sample points 
near locations where the integrands experience rapid 
variation in their values. 

The physical problem chosen for this second 
example was a thick circular hollow cylinder whose 
inner and outer radial surfaces were ~din~ined at con- 
stant temperatures of 1000 and 100 units respcctivcly. 
The other faces of the cylinder were insulated against 
heat flow. The coefficient of thermal conductivity 
was taken as 3 units. Figures 6(a) and (b) show the 
geometry and boundary conditions imposed on all 01 
the quarter symmetry BEA models discussed. A scrics 
of analyses and design sensitivity analyses was per- 

Table 3. Internal response sensitivities for a rectangular bar 

Exact Computed 

Point T., Cit./. ‘11 1. 4 1.1 7-r ii ‘.i ii? I 

Case 1 : sample points having linearly varying s, geometric sensitivit) 
it 0.0 0.0 -675.00 --675.00 0.0 0.0 0.0 0.0 0.02584 0.03409 -672.80 -673.25 -0.921 -0.63779 I I 

: 0.0 0.0 -675.00 ~ 675.00 0.0 0.0 0.0 0.0 0.03639 0.01061 - - 673.08 674.84 0.00673 0.01016 
e 0.0 -675.00 0.0 0.0 0.0~0 I ~ 674.85 0.01228 
f 0.0 -675.00 0.0 0.0 -0.02142 ~ 614.79 0.00673 

Case 2 : points having zero geometric sensitivity 

: 28.125 56.250 -675.00 - 675.00 0.0 0.0 0.0 0.0 28.1340 56.2580 
- 
-674.14 674.25 -2.48140 -0.53671 

: i 56.250 12.500 -675.00 - 675.00 0.0 0.0 0.0 0.0 I S6.2630 12.5000 ~ -- 674.78 674.82 0.00564 0.00927 
e 225.000 -675.00 0.0 0.0 224.9700 -- 674.86 0.01271 
f 393.500 -675.00 0.0 0.0 393.6700 -- 674.85 0.01901 

Y:1 

-0.68729 
0.01813 
0.00673 
O,OlO16 
0.01228 
0.00673 

-0.04935 
0.79234 
0.00564 
0.00927 
0.01271 
0.01901 
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(a) BEA Model (c) Radial Geometic Sensitivity 

FIG. 6. Hollow cylinder example problem. 

formed based upon this physical problem. In all of 
these cases, the outer radius b was chosen as the design 
variable. The analytical solution for this heat transfer 
problem is well known, with the temperature a log- 
arithmic function of radius and the heat flux varying 
as the reciprocal of radius. These expressions for tem- 
perature and normal heat flux were differentiated to 
yield exact analytical expressions for these sensitivities 
to changes in b. It is important to note here that the 
derivatives computed in this implicit differentiation 
DSA approach are true material derivatives, including 
the change in the response field and the possible 
change in the sample point location induced by the 
change in the design variable. Thus, any differ- 
entiation of an exact analytical expression must also 
be a material differentiation, performed by first para- 
meterizing the sample point location in the exact 
expression in terms of the design variable and then 
taking due regard for this derivative in the differ- 
entiation process. Figure 6(c), for example, shows two 
different schemes that can be employed to control sets 
of sample (node) point locations, both based upon 
the value of the design variable b. The fill geometric 
sensitivity scheme has all nodes with radial location 
greater than a geometrically sensitive to b. This radial 
geometric sensitivity varies in a linear fashion from 
zero at R = a to unity at R = b. The second scheme, 
also depicted in Fig. 6(c), has only the nodes in the 
radially outward-most row of elements geometrically 
sensitive to b. Note that a change in b will cause an 
identical change in the actual temperature and heat 
flow fields simulated by either the full or partially 
sensitive BEA models. However, because the nodes 
present in these two BEA models move to different 
locations in this response field, the node point geo- 
metric sensitivities will be different. Nodes on the inner 
and outer radius of these cylinder models will have 

identical response sensitivities because these nodes 
have identical geometric sensitivities in both the full 
and partial geometric sensitivity scheme. 

Case 1 : one-zone model with full geometric sensi- 
tiuity. Figure 6(a) shows the single zone BEA model 
used in these demonstration problems. This model 
contained 154 nodes and 76 six-node triangular 
elements and the overall left hand side matrix associ- 
ated with this model required 132 209 words of com- 
puter memory. Table 4 contains CPU timings for 
the major computational steps involved in both the 
analysis and DSA process. From this table it is seen 
that the 24.7 CPU seconds spent in the analysis step 
to factor the BEA overall system matrix is saved in the 
DSA process. However, the numerical integrations 
required in the DSA step take about twice as much 
time as that required in the analysis. This is due to the 
fact that the two term expression for the kernels shown 
in equations (9) and (10) is about twice as complicated 
as that integrated in the usual BEA process. Table 5 
contains the exact and computed values of the tem- 
perature and normal heat flux sensitivities for the case 
of full geometric sensitivity illustrated in Fig. 6(c). 
Table 6 contains the exact and computed values of 
the tangential heat flux sensitivities, while Table 7 
contains temperature and heat flux vector sensitivities 
for the internal points shown in Fig. 7. The internal 
response recovery points are all located in the 
xj = - 1.5 plane and have radial geometric sen- 
sitivities that are the same as nodes located at the same 
radial locations. Note the extreme accuracy of the 
predictions appearing in all these tables, with most 
predictions in error less than 1%. 

Case 2: one-zone model with partial geometric 
sensitivity. This BEA model is identical to the one 
used in the previous example except that its nodes 
were only partially sensitive to the design variable b. 
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Table 4. CPU timings for major steps in analysis and DSA for cylinder example cases 

Case I Case 2 Cast 3 Case 4 (‘asr 5 

Analysis 
Preliminaries 
Numerical integration 
Zone assembly 
Zone condensation 
Overall assembly 
Matrix factorization 
Forward reduction and back substitution 
Surface response recovery 
Interior response recovery 

Design sensitivity analysis 
Preliminaries 
Numerical integration 
Zone assembly 
Ovperall assembly 
Forward reduction and back substitution 
Surface response recovery 
Interior response recovery 

Total 

Table 4 again reveals that the 24.6 CPU seconds spent 
in the analysis step to factor the BEA overall system 
matrix are saved in the DSA process. In this example, 
the numerical integrations required in the DSA step 
take only 88% of the time required in the analysis. 
Although the more complicated two term expression 
for the kernels shown in equations (9) and (10) is again 
being integrated, this integration is only required for 
the reduced number of element and load point pairs 

Table 5. Surface temperature and normal heat flux sen- 
sitivities for case I 

Point 

Exact Computed Point 

1, 4.1 (1 ‘/.I 

0.00000 -46.6520 
0.00000 -46.5890 
0.00000 -46.6180 
0.00000 -46.5850 
0.00000 -46.6240 
0.00000 -46.5960 
0.00000 -46.5640 

-5.16630 0.0000 
-5.16870 0.0000 
- 8.02760 0.0000 
- 8.00760 0.0000 
---9.15910 0.0000 
-9.12670 0.0000 
~ 8.98040 0.0000 
~ 7.78660 0.0000 
-7.75320 0.0000 
~ 5.78860 0.0000 
-- 5.75960 0.0000 
-3.13600 0.0000 
-3.13520 0.0000 

0.00000 - 32.5750 
0.00000 -32.7860 
0.00000 -32.5690 
0.00000 -32.7660 
0.00000 - 32.5960 
0.00000 ~ 32.6020 

I 0.00000 -46.605 I 
2 0.00000 -46.6051 
3 0.00000 -46.6051 
4 0.00000 -46.6051 
5 0.00000 -46.6051 
6 0.00000 -46.605 I 
7 0.00000 -46.6051 
8 -5.17260 0.0000 

14 -5.17260 0.0000 
I5 -- 8.02380 0.0000 
21 - 8.02380 0.0000 
22 -9.15290 0.0000 
28 -9.15290 0.0000 
29 - 8.97350 0.0000 
36 - 7.77990 0.0000 
42 ~ 7.77990 0.0000 
43 -5.78630 0.0000 
49 - 5.78630 0.0000 
50 -3.15270 0.0000 
56 -3.15270 0.0000 
57 0.00000 ~ 32.6020 
so 0.00000 -32.6020 
60 0.00000 - 32.6020 
61 0.00000 - 32.6020 
62 0.00000 - 32.6020 
63 0.00000 -32.6020 

I.4 I .4 1.5 I.8 I.7 
24.7 24.6 23.5 22.9 22.7 

3.5 3.6 4.0 2.7 2.6 
0.0 0.0 0.0 0.0 I .‘) 
0. I 0. I 0.1 0. I 0. I 
1.2 1.7 2.2 I.7 0.2 
0.3 0.3 0.3 O.-t 0 2 
0.4 O.-t 0.3 0.5 0.0 
4.x 6.2 8.2 x.4 0.0 

0.3 0.3 0. I 0. I 0. I 
48.2 21.6 42.x 10.5 IO. I 

4. I 4. I 4.6 I.2 0.7 
0. I 0.1 0. I 0.0 0.0 
0.3 0.3 0.3 0.4 0.2 
0.3 0.3 0.3 0.3 0.0 

12.0 13.0 17.0 17.9 0.0 

102.7 78.5 105.3 6X.9 4tl.i 

that produce finite values of ,q,,_, t: and (I*(, in this 
model with partial geometric sensitivity. Tables X-10 
contain the exact and computed values of the surface 
and internal response sensitivities for this case of par- 
tial geometric sensitivity illustrated in Fig. 6(c). Again, 
the internal stress recovery points are all located in 
the .x3 = - I .5 plane but they all have radial geometric 
sensitivities equal to zero. It can be seen from this 

Table 6. Surface tangential heat flux sensitivities for case I 

6 

8 
14 
15 
21 
22 
2x 
29 
35 
36 
42 
43 
49 
50 
56 
57 
58 
59 
60 
61 
62 
63 

Exact Computed 

‘II i ‘/?.I. 

-46.6051 0.0000 
-45.0171 - 12.0624 
---40.3612 --23.3026 

~- 32.9548 -32.9548 
.- 23.3026 -40.3612 

~ 12.0624 -45.0171 
0.0000 -46.6051 

-49.3842 0.0000 
0.0000 -49.3842 

~ 49.2023 0.0000 
0.0000 -49.2023 

47.4179 0.0000 
0.0000 -47.4179 

~ 44.8021 0.0000 
0.0000 -44.8021 

~~~41.8015 0.0000 
0.0000 ~41.8015 

-38.6774 0.0000 
0.0000 -38.6774 

- 35.5819 0.0000 
0.0000 -35.5819 

-32.6020 0.0000 
~31.4911 - 8.4380 
-28.2342 - 16.3010 
-33.0531 -23.0531 

16.3010 ~ 28.2342 
-8.4380 -31.4911 

0.0000 -- 32.6020 

(ii i Y?/ 

-47.8110 0.0000 
-45.0020 - 12.0580 
.- 40.4730 - 23. I340 
~- 32.9400 -- 32.9400 
-23.4870 -40.2760 
- 12.0600 -45.0080 

0.0000 -47.7480 
-48.9390 0.0000 

0.0000 -48.9780 
-49.8510 0.0000 

0.0000 -m49.7620 
-47.2240 0.0000 

0.0000 -m47.21 IO 
-45.1460 0.0000 

0.0000 m-45.1 I20 
~41.6890 0.0000 

0.0000 -41.6860 
- 38.8020 0.0000 

0.0000 - 38.8640 
- 35.4800 0.0000 

0.0000 - 35.4700 
~ 32.5990 0.0000 
- 3 I .4650 -8.431 I 
~ 28.3220 --- 16.5160 
-- 23.0300 - 23.0300 
- 16.2600 -- 28.4470 

8.4364 - 3 I .4850 
0.0000 -- 32.6870 
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Table 7. Internal response sensitivities for case 1 

Exact Computed 

Point T, q1.L q2.L 43.r 

-8.9735 -43.2755 - 11.5956 0.0 
-5.1726 - 34.9199 -34.9199 0.0 
-8.0238 -34.7913 -34.7913 0.0 
-9.1529 -33.5295 -33.5295 0.0 
- 8.9735 -31.6798 -31.6798 0.0 
-3.1527 -25.1602 -25.1602 0.0 
-8.9735 -22.4010 -38.7997 0.0 

TL 41.L 

- 8.9752 -43.2850 
-5.1419 -35.5740 
-8.0175 - 34.7680 
-9.1465 -33.5140 
-8.9656 -31.6750 
-3.1482 -25.1180 
-8.9617 -22.4220 

42.L 4s.r 

- 13.0410 
-35.5990 
- 34.7980 
-33.5540 
-31.7050 
-25.1590 
- 38.8090 

-0.671E-5 
-O.l08E-3 
-0.267E-3 

0.542E-4 
0.717E-4 
0.576E-4 
0.263E-3 

example case that the sensitivities of the response at 
the internal points can be computed regardless of 
whether the overall model has full or partial geometric 
sensitivity. That is, Tables 7 and 10 demonstrate that 
interior response sensitivities are computable both 
when the internal points chosen move or do not move 
with respect to the unperturbed model. Note again 

FIG. 7. Locations of internal sample points. 

Table 8. Surface temperature and normal heat flux sen- 
sitivities for case 2 

/’ 

Exact Computed 

Point l,L q.L ‘,L q.L 

1 0.00000 -46.6051 0.00000 -46.6690 
2 0.00000 -46.6051 0.00000 -46.6290 
3 0.00000 -46.6051 0.00000 -46.6780 
4 0.00000 -46.6051 0.00000 - 46.6460 
5 0.00000 -46.6051 0.00000 -46.6860 
6 0.00000 -46.6051 0.00000 -46.6530 
7 0.00000 -46.6051 0.00000 -46.6820 
8 9.87860 0.0000 9.88740 0.0000 

14 9.87860 0.0000 9.88970 0.0000 
15 19.22360 0.0000 19.23700 0.0000 
21 19.22360 0.0000 19.23900 0.0000 
22 28.13260 0.0000 28.15000 0.0000 
28 28.13260 0.0000 28.15600 0.0000 
29 36.68050 0.0000 36.69900 0.0000 
36 44.92570 0.0000 44.94200 0.0000 
42 44.92570 0.0000 44.96300 0.0000 
43 52.91490 0.0000 52.91600 0.0000 
49 52.91490 0.0000 52.95800 0.0000 
50 24.02920 0.0000 24.06500 0.0000 
56 24.02920 0.0000 24.06000 0.0000 
57 0.00000 -32.6020 0.00000 - 32.7750 
58 0.00000 -32.6020 0.00000 - 32.3660 
59 0.00000 - 32.6020 0.00000 - 32.6260 
60 0.00000 - 32.6020 0.00000 -32.4040 
61 0.00000 - 32.6020 0.00000 - 32.6080 
62 0.00000 - 32.6020 0.00000 - 32.4300 
63 0.00000 - 32.6020 0.00000 - 32.4520 

the extreme accuracy of these predictions, with most 
predictions in error less than 1%. 

Case 3 : two-zone model with full geometric sensi- 

tivity. Figure 8 shows a two-zone BEA model also 
used in these demonstration problems. This model 
contained 159 nodes (five more than the single zone 
model) and 88 six-node triangular elements (12 more 
than the single zone model) and the sparse blocked 
overall left hand side matrix required 133 185 words 
of computer memory. From Table 4 it is seen that the 
24.7 CPU seconds spent in the analysis step to factor 
the BEA overall system matrix are saved in the DSA 
process. However, the numerical integrations required 
in the DSA step again took about twice as much time 
as that required in the analysis. This is again due to 
the fact that the two term expression for the kernels 
shown in equations (9) and (10) is about twice as 

Table 9. Surface tangential heat flux sensitivities for case 2 

Exact Computed 

Point q1.L q2.L q1.L q2,L 

1 -46.6051 0.0000 -46.6340 0.0000 
2 -45.0171 - 12.0624 -45.0400 - 12.0690 
3 -40.3612 -23.3026 -40.5260 -23.1640 
4 - 32.9548 - 32.9548 -32.9840 -32.9840 
5 -23.3026 -40.3612 -23.5180 -40.3300 
6 - 12.0624 -45.0171 - 12.0750 -45.0640 
7 0.0000 -46.6051 0.0000 -47.7480 
8 -39.7550 0.0000 - 39.7950 0.0000 

14 0.0000 - 39.7550 0.0000 - 39.7990 
15 - 34.2043 0.0000 - 34.2040 0.0000 
21 0.0000 -34.2043 0.0000 - 34.2700 
22 -29.6358 0.0000 - 29.6340 0.0000 
28 0.0000 -29.6358 0.0000 -29.6500 
29 -25.8271 0.0000 -25.8370 0.0000 
35 0.0000 -25.8271 0.0000 - 25.8760 
36 -22.6178 0.0000 -22.5750 0.0000 
42 0.0000 -22.6178 0.0000 -22.6180 
43 - 19.8890 0.0000 - 19.7900 0.0000 
49 0.0000 - 19.8890 0.0000 -20.6850 
50 -27.9045 0.0000 -27.4890 0.0000 
56 0.0000 -27.9045 0.0000 -27.5090 
57 -32.6020 0.0000 -32.8540 0.0000 
58 -31.4911 - 8.4380 -31.2630 -8.3768 
59 -28.2342 - 16.3010 -28.1840 - 16.4350 
60 -23.0531 -23.0531 -22.9130 -22.9130 
61 - 16.3010 -28.2342 - 16.1810 -28.3100 
62 -8.4380 -31.4911 -8.3936 -31.3250 
63 0.0000 - 32.6020 0.0000 - 32.6870 
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Table 10. internal response sensitivities fix case 2 

Exact 

- 
Computed 

T, 41.1 ‘I I i 47.1 

36.6790 -- 24.9290 -6.6867 -0.RX2E -- 3 
9.8853 -28.1060 -2x.i i80 --- 0.327E ---3 

19.2310 -24.1890 - 24. I980 -0.171E-3 
28.1420 ---20.9390 - 10.9640 -0.863E--3 
36.6X90 - 18.2540 - I X.2620 -~-0.532E -4 
60.6860 - 12.3470 - 12.3400 O.ll2E--3 
36.6940 - 12.9030 -22.3810 0.235E 3 

Zone-2 
1 

z.one- 1 

i 

FIG. 8. Hollow cylinder two-zone BEA model 

complicated as that integrated in the usual BEA pro- 
cess. The accuracy of the temperature, surface heat 
flux components. and internal response sensitivities 
for this case were similar to those obtained in the 
single zone problem. 

Case 4: two-zone model with partial geometric. 

sensititlity. In this two-zone model, only zone 2 is 
geometrically sensitive to 6. and thus only this zone 
contributes finite values of [I;‘].,, and [G],,,. This 
numerical integration in the DSA step takes only 46% 
of the time required to perform the numerical inte- 
gration in the analysis. The accuracy of the tempera- 

ture, surface heat flux components, and internal 
response sensitivities for this case were again similar 
to those obtained in the single zone, partially sensitive 
problem. This example quantifies the computer time 
savings that can be achieved via the implicit differ- 

cntiation approach for models with partial geometric 
sensitivity. 

Case 5 : two-zone nzodd with partial geomrtric~ 
sensitivity and with zone 3 condensed. This case is 
identical to &he previous one except that zone 1 is 
condensed in the analysis process as described in ref. 
[7]. All matrices present in the DSA process for this 
case are of reduced size as described in this reference. 
The accuracies in this case are identical to those occur- 

ring in case 4. 

SUMMARY 

A three-dimensional design sensitivity analysis 
formulation has been presented based upon the 
boundary element analysis method and implicit differ- 

entiation. The effectiveness of this theoretical formula- 
tion and its implementation has been demonstrated 
for the accurate and efficient computation of the 
sensitivities of temperature, surface heat flux compon- 

cnts, and internal response quantities by means of a 
series of three-dimensional example problems. 
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ANALYSE THERMIQUE DE SENSIBILITE A LA FORME PAR UNE METHODE 
TRIDIMENSIONNELLE D’ELEMENT DE FRONTIERE 

R&sum&On presente une analyse de sensibilite a la forme (DSA) t&s efficace et precise numeriquement 
pour la reponse thermique dun solide tridimensionnel(3D) ; elle utilise une formulation d’analyse directe 
d’element de frontiere (BEA). On presente les formulations theoriques des sensibilites pour la reponse 
primaire (temperature et flux normal thermique parietaux) et des sensibilites a la reponse secondaire 
(composantes tangentielles du flux thermique, tempkrature et composantes du flux thermique en un point 
interieur). On discute les don&es du calcul pour l’efficacite globale d’implementation de ces formulations. 

Des resultats numeriques sont present&s pour demontrer la precision et l’efficacite de cette approche. 

UNTERSUCHUNG DER SENSITIVITAT DER THERMISCHEN DARSTELLUNG EINES 
DREIDIMENSIONALEN RANDELEMENTS 

Zusammenfassung-Fiir die Darstellung des thermischen Ubergangsverhaltens eines dreidimensionalen 
Festkorpers wird eine recheneffiziente und genaue Sensitivitltsanalyse vorgestellt, die eine direkte und 
singullre Formulierung der Randelementanalyse bent&t. Die theoretische Formulierung fiir die Sensitivitit 
der primlren Systemantwort (OberlIlchentemperatur und Wlrmestromdichte in normaler Richtung) und 
der sekundaren Systemantwort (Tangentialkomponenten des Warmestromdichten-Vektors, Temperatur 
und Komponenten des Wlrmestromdichten-Vektors im Inneren) wird vorgestellt. Hierzu wird eine Anzahl 
von Rechenergebnissen beziiglich der Gesamtelhzienz der Implementienmg dieser Formulierungen disku- 
tiert. Zur Darstellung der Genauigkeit und Ellizienz dieses Nlherungsverfahrens werden numerische 

Ergebnisse prasentiert. 

AHAJIW3 YfIPAB.RREMOCTH TEI-IJIOBbIM I-IPO@HJIEM TPEXMEPHOFO I-PAHI+IHOI-0 
3JIEMEHTA 

Armo’ralaa-Ha ocrione npnhsoro CHHrynnpHoro arianU3a rpaHH¶Horo 3nehferiTa npeanoxea ~+$~KTHB- 

ubrfi u ToqHbtii hwron aaanasa ynpasnnehfocw Qop~oii arm onpenenetim wHabn.viecKHx xapaKTeprrc- 

TBK TpeXMepHbIX TaepnbIX Ten. AaHbl TeOpeTHWZCKHe +OpM)‘JXipOBKEi lIepBHVHOii ynpaBJIKeMOCTH 

XapaKTepHCTHKaMA (TeMnepaTmO% nOBepXHOCTH B nOpMa.,IbHUM TelUlOBbIM IIOTOROM) H BTOpHYHOfi 

ynpaBJlaeMOCTB XapaKTepHCT&iKaMH (TaHTeHUHaJIbHbIMH KOMnOHeETaMH BeKTOpa Ter"IOBOr0 nOTOKa, 

TeMnepaTypOfi BHyTpeHHeii TOSKH H KOMnOHeHTaMW BeKTOpa TellJIOBOrO IIOTOKa). 06CyaaeTCS pnn 

pacxomneH5ifi B ~$+ZKTHBH~CII~ 5icnonb30BaHnn ~THX @opMynripoeok. npencraaneHbIvHcnenHblepesy_ 


